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Speckle Interferometry
For a Partially Coherent Source

1. INTRODUCTION

The conventional theoretical resultl'.9 for the spatial frequency spectrum of
a source, as obtained using speckle interterometry" . is based on the assumption
that the source is spatially incoherent. This assumption is not restrictive when
imaging distant stars, because the coherence patches are generally unresolvable
by the imaging system; however, when one tries to obtain detail over sizes on the
order of the spatial coherence length, the conventional theory is no longer valid,
and must be modified. In this paper we will obtain the frequency transfer function
for the combination of atmosphere and imaging system in the case when the source
is partially coherent, and can be represented by the quasi-stationary model em -
ployed by Carter and Wolf, 19 and Leader. 11 the limiting case when the source
consists of 2 point sources with random phase relationship has been studied by

Miller and Korff. 12

(Received for publication 29 March 1979)

Due to the number of references to be included as footnotes on this page, the
reader is referred to the list of references, page 15.
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2. ANALYTICAL FORMALISM

In the Labeyries‘ i procedure a series of short exposure photographs of a
star are taken and then successively projected, in the conventional manner, by a
laser onto a second piece of film. This leads to an evaluation of the ensemble
average of the modulus squared of the Fourier transform of the irradiance, and
gives finer detail than conventional seeing calculations predict should be resolv-
able in the presence of atmospheric turbulence.

In order to discuss the aforementioned method quantitatively, let us refer to
Figure 1. If the field distribution of the source is denoted by uo(ﬁl)‘ the field in
the image plane, where film is located is,

e-ik(L+x)

uelp) =

-
2
. ff d“p ule) M @,.p) (1)
=00

where

L)
M(p,.p) - ff a? Py Tlo,) exp { ikp, (-B'Tw-l%-) +w522,£l)} . (2)
-

In writing Eq. (1) we have assumed that™ the film is in the Fraunhofer zone of the
source, defined T(gz) as the transmissivity of the aperture and k = 27/X as the
signal wavenumber. Also w(g_z, _p_l) is the additional complex phase, due to atmos-
pheric turbulence, of a spherical wave propagating from the point (x, -ﬂl) on the
source to the point (0, .Ez) in the aperture. The short-exposure" transparency on
the film is proportional to ufu;'. N such short exposures are made, with the time
interval between successive exposures greater than the atmospheric coherence
time, so that we have N statistically independent short exposure photographs, If
a photographic plate is then placed at x = ~-L, and these exposures successively
projected onto it, it is found that the transparency on the plate is proportional to
(Jitkp/1)|?), where

* 2
If the film is in the Fresnel zope, we simply replace u,{p) by udp) exp (ikp“/2L),
and u (p;) by u p,) exp (-ikp3/bx). R :

*
= By short exposure we mean short compared with the coherence time of the .
atmosphere,
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w is the radian spatial frequency, and ( ) denotes an ensemble average over the
statistics of the turbulence. This average occurs because the transparency on
the plate is the sum of N > 1 short exposures.

We can relate the quantity in Eq. (3) to the source distribution by substituting
Eq. (1) for “f(ﬂ)' The result is

Q0
- -2 SRR S ¥ * 2L
Lw) = (2mAx) ff d%, d%, d%, uo(gl)uo(gs) T(ﬁz)T (ﬁz +—T>

=

5 exp{"‘(ﬂz'.ﬂl) +w*(£2 +EL/ku‘l3) i i',‘:_ﬂz < (g, '23) & i',l';'&". : 23}
(4)

The overbar on the quantity uo(gl) u; (_33) indicates an average over source statis-
tics, and arises because it has been tacitly assumed that the exposure time of the
individual speckle pattern is much longer than the source coherence time, but of
course, much shorter than the coherence time of the turbulent atmosphere.

For a spatially incoherent source one usually assumes uo(ﬂl)u: (23) =
Ac 13(21)6 (ﬂl -33) where 6(...) is the Dirac delta function and I, is the source
irradiance distribution. However, for partially coherent sources this assumption
is invalid, and instead we shall employ the quasi-stationary model used by Carter
and Wolf, e and others. That is, we shall write

L1 *e3

*
ﬂo(ﬂl)uo(_es) = IS (——-2——) g(gl '23) (5)
where g is the correlation function of the source. In writing Eq. (5), it is tacitly
assumed that the source coherence length is much smaller than the total size of
the source.




We now use Eq. (5) in Eq. (4), define sum and difference coordinates
i Ly "Ry N (gl *23)/2, etc., and then perrorm‘ the ensemble average over
the turbulence statistics, assuming that the source lies wholly within an isoplanatic
turbulence patch, so that y(p,p') >~ ¥(p, 0). The result is

: 2
Ar@!? - Be|i, (_-,‘-;-) : (6)
where
[ J
1@ - en2 ff a®v I (v) exp (-iQ- V) . M
-0

Therefore, the modulus squared of the Fourier transform of the source distribu-
tion is linearly related to the measured quantity, (IIrfz). Also in Eq. (6), we have
defined

B = o™ ﬁ a®y K (0, 7) exp ; - D, (
=00

+% D, (1-«_.)_—‘1“-,0) +-%— D, (l+2%,0)£ . (8)

Ie
|
=D
L
R
2
=

where
0
K @) - ff a*r T(r + /2T (1 + 1/2 + W L/K)
-0

cTMr - YD T(r - 1/2 + WL/ G(T, 1,0 G (1, 30 (®

"rhe derivation of the average, 1

* »
(exP(W(ﬂzozl) tv (ez +£L/k-2x) tv (25.9_4) + ¢'(£5 s EL/k-h)]>
over the statistics of the turbulence is given by Eq. (34) of R. Fante, '"Some
results on the imaging of incoherent sources through turbulence," J. Opt. Soc.
Am, 66, 574-580 (1976).




and

z]x

£ . (107_/2 + wL/2k) a (10)

€O
Glr, v, 0 - ff %€ g() exp )
-0

The structure function Dl of the atmospheric turbulence is given by
, 2lg/pe |9/3
Dy (8,0 > 2 8/r | ; (11)

and the atmospheric coherence length, P o is defined as

-3/5

{
ro = | 1.48 k2] (i;:—"—) Ci(x') dx! : (12)

L 1)

where (‘ﬁ(x') is the index-of-refraction structure constant of the atmosphere,

The result in Eq. (6) is of the same form as previous results obtained for a
spatially incoherent source, but differs in the definition of K (w,y). For a spa-
tially incoherent source, so that glg, -p3) - A b @, - 23) where A is the co-
herence area of the source, we find G - A and Eqs. (6)—(10) then reduce iden-
tically to the result of Korl‘fl for the spatlall} incoherent source.

3. APPROXIMATE EVALUATION OF TRANSFER FUNCTION, Hw)

We would now like to investigate the effect of the partial coherence on the
transfer function, H(w). In order to do this, we will assume that the source co-
herence function g(§) is given by

2
g(E) = exp (--5-2—) - (13)

where a is the source coherence length. Upon using this expression in Eq. (10),
we find

2
G(T,7,w) = A_ exp [ . (‘%) lr +y/2 *gL/2k'2} . (19)

2

where A " ¥a" is the coherence area of the source,
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The next step is to substitute G into Eq. (9) and evaluate Ko(g, y). Fora
realistic aperture, such as on a telescope, ’!"222) = 1 for |£2| < D and T(gz) =0
for |p2| > D. Unfortunately, the expression for K in Eq. (8) cannot be evaluated
in closed form when this expression is used for T(gz). Thezrefozre, we have been
forced to approximate T‘P-z) by the function T(P-Z) = exp (- p2/D ), with the reali-
zation that, because we are approximating the edge diffraction, our results will
be valid only for radian spatial frequencies such that !u_:_‘ < kD/L. That is, setting
T(L’.z) = 0 for ‘P-z' > D would give H(_u_{); 0 for }gl > kD/L; however, because we
will approximate T(gz) by exp (- p2/D ) we will obtain an expression for H(w)
which does not vanish for ‘_u_)l > kD/L. If the aforementioned approximation is
used, along with Eq. (14), in Eq. (9) we find that

(15)

K2 * (_1_ i i '
2 2
lc D

where £, * 23/2x/(ka) = (2/7}\(:)‘/2 Ax is the coherence length, as measured at
the receiving aperture, of the field radiated by a coherence patch of radius a on

the source.
We next investigate the behavior of the function

C(w,7) = exp {- D,;@L/k, 0) - D,(y,0) +1D,(y - wL/k,0) +5 Dy + wL/k O}
(16)

It is found that for L_._;; « kro/L, this function can be approximated by unity. How-
: %k . N

ever, the more interesting case occurs  when l&.’l > kro/L. In this limit,

C(w, y) can be approximated by

Clw,y) ~ exp (- 2|1/ro|5/3} . an

The result in Eq. (17) is inconvenient for analytical purposes; consequently, we
shall approximate the exponent in Eq. (17) by a quadratic function, so that

*The evaluation can be performed in the limit when G(£) = A e

**We are assuming that r, < D. For r_ » D, the atmospheric turbulence has an
insignificant effect on the imaging.

11




(8] \

Cl,y) > exp ;- 2.296 ll r lz ( : (18)

The function in Eq. (18) s such that C equals o~} at the same value of '}_‘ as does
the function in Eq. (17).
If we now use Eqs. (15) and (18) in Eq. (8), we can calculate the transfer

function H(W). For values of Lf such that L'i » kr,) L., the result m‘
- - . AN

2 9
K exp (- v"l." k"l) R

H) o = . (19)
1+ RS i1 » D + 2.206 _9_\-
l“ | l 2.2 ro/
Vi ,
where

9
4 /A3 / \4
K = 2.467 -Ll) -—%) = . (20
x‘ A ) c

Because of our approximation for T ,), the result in Eq. (19) can be applied to
realistic apertures only for spatial Frequenmes such that U < kD/L. In the limit
when r, < D and the source is incoherent, so that i lC =0, Eq. (19) reduces to
the high-spatial frequency approximation obtained by Korff. A

For values of l._._' such that {ﬁ’ « kx'0 'L the evaluation of Eq. (8) givesT

H() —-J‘——z-—; : (21
[1 + (_D.\ ]'
{
Cy

A qualitative plot of H(w) s shown in Figure 2, for the limits when r, <« D
and ry D. In this latter case, of course, the turbulent atmosphere does not

affect the imaging.

‘Note that H(w) is not normalized to unity at w =0, as is often done.

tr\ctly fgeakmg t¢ never really becomes infinite, because a > A, Therefore,

tBm‘ause r, ig assumed to be less than D, the assumption that H « kr 'L
lmphes th 2& E' /kD| « 1, Consequemlv in Eq. (21) we have approxifated
/

exp (~?L2/k“D?) by unity,

12
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4. DISCUSSION

From Figure 2, we observe that the amplitude of H(w) at small spatial fre-
quencies is determined by the size of D/lc. For ’c > D we get the usual
Labeyrie result, but when lc <« D the result in Eq. (21) becomes Hw) - 1.

It is also interesting to observe the nature of the high-spatial-frequency
plateau in H(w) for the case when r, < D. We will not discuss the case when
r,>»>D because in that limit atmospheric turbulence does not affect the image.

;
If r, < D but lc > D, we get the previous result of Korff; however, if r <« D and :
L, < Dwe find, for Igl > kro/L

22

H() ~ 20 (’L% /KD (22)

P 2 ¥ b

C |

1+2.206 (T ) . ,
o]

e slecniiberit

13




From Eq. (22) we see that if l‘. “ r“, "“;‘) . oxp (-hn;’l 2 'k;'l).“))_ and the high-
frequency transfer function approaches that for a coherent source. However,
when I‘.‘) ml‘..r':n:\)m- or greater than P the amplitude of H) differs from

exp (= L7/K7DY), Qualitative results for H() in the limit when both t.=D

and r, D are shown in Figure 3,

’0\\ "o
: 2z

' /lea’o

fras s’

-1!

0 0
0 (Wl 7 ND) =

Figure 3. Qualitative Plot of H(w) for the Cuse When Both t,xDandr «D
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